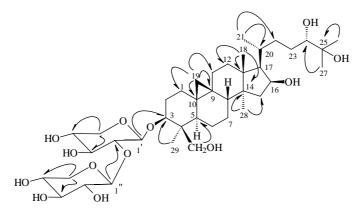
New Triterpene Glycoside from Thalictrum smithii

Shi Chun YU*, Qing Li WU, Li Wei WANG and Pei Gen XIAO


Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094

Abstract: A new triterpene glycoside, 24S-cycloartane- 3β , 16β , 24, 25, 30-pentaol 3-O-(2-O- β -D-xylosyl)- β -D-xyloside was isolated from *Thalictrum smithii*. Its structure was determined by spectroscopic and chemical methods.

Keywords: *Thalictrum, Thalictrum smithii*, triterpene glycoside, 24S-cycloartane-3 β , 16 β , 24, 25, 30-pentaol 3-O-(2-O- β -D-xylosyl)- β -D-xyloside .

Compound **1** was isolated from *Thalictrum smithii.*, white crystal, mp. 211-213 °C, gave a molecular formula of C₄₀H₆₈O₁₃ based on its negative FAB-MS (*m/z* 755 M⁺-1, 623 M⁺-xyl-1, 491 M⁺ -1 of aglycone), ¹H NMR and ¹³C NMR spectra.data were listed in Table 1.

Figure 1. Compound 1 and its HMBC spectral interaction

In the ¹H NMR (500 MHz, DMSO-d₆) of **1**, the proton doublets interacting with one another in the manner of an AB system are observed in the upfield at δ 0.27 and 0.45 (each 1 H, d, J=2.9 Hz, H-19), indicating the presence of a cyclopropane ring. There are also six methyl signals at δ 0.80 (s, H-28), 0.84 (d, J=6.5 Hz, H-21), 0.99, 1.03 (s, H-26, 27), 1.03 (s, H-29) and 1.08 (s, H-18), while there is no signal of olefinic proton. It can therefore be assumed that the aglycone of this compound is a derivative of the lanostane,

which is closely similar to cyclofoetigenin B, 24S-cycloartane-3 β , 16 β , 24, 25, 30-pentaol, comparing with the NMR spectral data^{1, 2}.

No	¹³ C	DEPT	${}^{1}\mathbf{H}$	No	¹³ C	DEPT	${}^{1}\mathrm{H}$
1	31.3	CH_2	1.16, 1.40	21	17.6	CH ₃	0.84 (d, 6.5)
2	28.9	CH_2	1.63, 1.89	22	32.3	CH_2	1.11, 1.66
3	88.6	CH	3.25	23	27.1	CH_2	1.28, 1.42
4	43.9	С		24	76.6	CH	3.16
5	47.4	CH	1.28	25	71.5	С	
6	21.3	CH_2	0.91, 1.55	26	25.9	CH_3	1.03
7	26.1	CH_2	0.99, 1.23	27	24.8	CH_3	0.99
8	47.8	CH	1.43	28	19.8	CH ₃	0.80
9	20.2	С		29	19.7	CH_3	1.03
10	24.9	С		30	65.3	CH_2	3.34, 3.80
11	25.5	CH_2	1.27, 1.91	1'	103.6	CH	4.28 (d, 7.1)
12	32.4	CH_2	1.52, 1.57	2'	79.7	CH	3.28
13	44.7	С		3'	75.8	CH	3.33
14	46.0	С		4'	69.2	CH	3.26
15	48.1	CH_2	1.23, 1.90	5'	65.1	CH_2	3.05, 3.68
16	70.5	CH	4.23	1"	103.8	CH	4.42 (d, 7.6)
17	56.2	CH	1.44	2"	74.1	CH	2.98
18	17.6	CH_3	1.08	3"	75.8	CH	3.04
19	29.2	CH_2	0.27, 0.45 (d, 3.9)	4"	69.2	CH	3.25
20	28.3	CH	1.78	5"	65.6	CH_2	2.97, 3.62

Table 1. ¹H and ¹³C NMR spectral data of 1 (δ in ppm, J in Hz)

The acidic hydrolysis of **1** yielded D-xylose by co-TLC with authentic samples. Extensive analysis of the 1D and 2D NMR spectra, including DEPT, ¹³C-¹H COSY and HMBC (**Figure 1**), gave a conclusive sequence for the 3-O-diglycoside moiety to be 2-O- β -D-xylosyl β -D-xyloside. Furthermore, anomeric proton of one β -xylose at δ 4.28 (1H, d, J=7.1 Hz, H-1') exhibited a correlation with the C-3 (88.6, glycosylation shift ca. +8.0 ppm), and the anomeric signal of the other sugar, β -xylose, at δ 4.42 (1H, d, J=7.6 Hz, H-1'') showed correlation with the C-2' (79.7, glycosylation shift ca. +5.5 ppm). Further comparison of its ¹³C NMR spectral data with those of cyclofoetigenin B fully confirmed the structure of this compound to be 24S-cycloartane-3 β , 16 β , 24, 25, 30-pentaol 3-O-(2-O- β -D-xylosyl)- β -D-xyloside (**Table 1**)^{1, 2}.

References

- 1. T. V. Ganenko, M. I. Lutakii, A. A. Semennov, N. D. Abdullaev, M. B. Gorovits and N. K. Abubakirov, *Khim. Prir. Soedin*, **1986**, *22*, 315; *Chem. Nat. Compd.* (Engl. Transl.), **1986**, 288.
- 2. T. V. Ganenko, M. I. Lutakii, A. A. Semennov, N. D. Abdullaev, M. B. Gorovits and N. K. Abubakirov, *Khim. Prir. Soedin*, 1985, 21, 370; *Chem. Nat. Compd.* (Engl. Transl.), 1986, 61.

Received 16 November 1998